

The Carbon Border Adjustment Mechanism Cement sector

Dear participants,
Welcome to the webinar session on the

CEMENT SECTOR

Please be patient, the webinar will start at 10:00 AM (CET).

The Carbon Border Adjustment Mechanism (CBAM)

Webinar session on the cement sector

Please make sure that you appear in Zoom with your name and affiliation.

If needed, rename yourself:

- Click on the "Participants" icon in the Zoom toolbar.
- In the "Participants" window, next to your name click on "More" and choose "Rename".
- Enter a new name and click "Rename" to save it. You will see the new name showing in the "Participants" window.

Starting time: 10:00 AM (CET)

15 September 2023

Housekeeping rules

- All participants are muted
- ✓ Webinar is being recorded and will be made public.
- ✓ Video recording is not allowed.
- ✓ Please write your questions in the chat they will be answered at the end of the webinar
- ✓ A feedback survey will appear on your screen at the end of webinar
- The presentation will be uploaded on the <u>DG TAXUD CBAM</u> webpage, where you can also find additional materials.

Zoom poll

Question: Which entity defines you best?

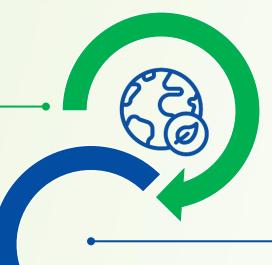
- EU Member State
- EU Importers
- Non-EU country
- Non-EU producer
- Non-EU exporter
- International organisation
- NGO & think tank
- Law firm, consultancy
- Academia
- Other

Webinar Agenda

- CBAM general overview
- 2 Determination of embedded emissions
- Cement sector:
 - Overview of the actors in CBAM
 - Reporting declarants
- Submitting CBAM reports

Carbon Border Adjustment Mechanism

1 CBAM general overview



The aim of CBAM

Prevents carbon leakage to ensure effectiveness of EU climate policy

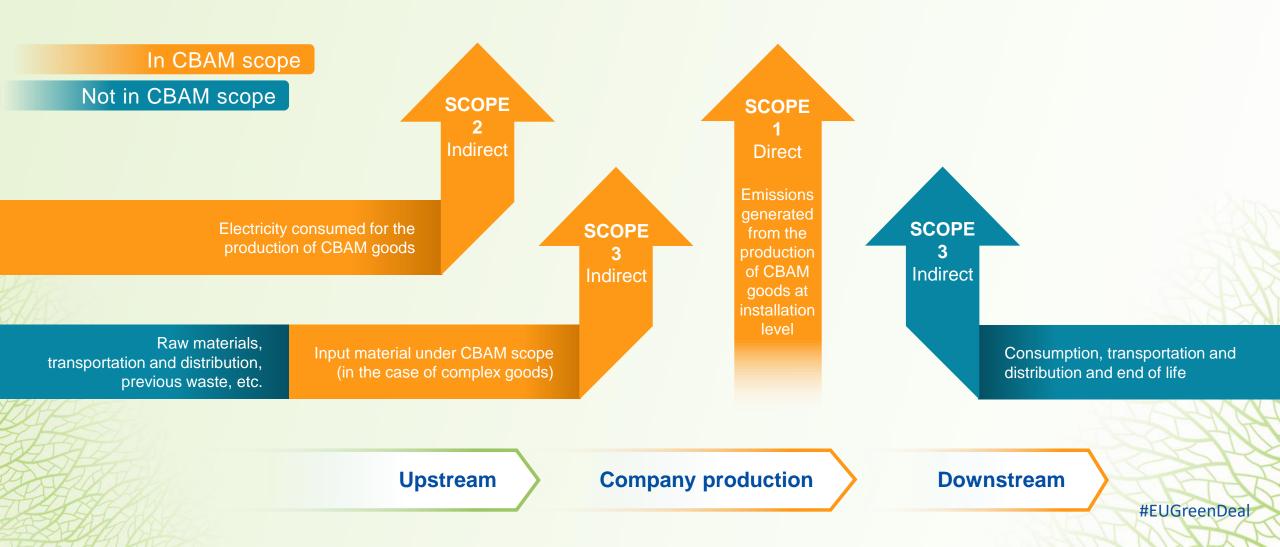
Contributes to decarbonisation globally and to reaching climate neutrality by 2050

Complements and reinforces the EU ETS

Reporting obligations in the transitional phase

October 2023 - December 2025

CBAM Report containing the following:


- Total quantity of goods imported during the preceding quarter
- Total embedded direct and indirect emissions
- The carbon price due in the country of origin for the embedded emissions

Report to be submitted quarterly

CBAM emissions during the transitional phase

Carbon Border Adjustment Mechanism

2 Determination of embedded emissions

Key Terms

Simple goods

 goods produced from fuels and raw materials considered to have zero embedded emissions under CBAM

Production process

 chemical or physical processes carried out in parts of an installation to produce goods under an aggregated goods category and its specified system boundaries

Complex goods

 goods produced from other CBAM goods (either simple or other complex goods)

Production route

 specific technology used in a production process to produce goods

Aggregated goods category

- group of CBAM goods with different CN codes but similar characteristics
- for each aggregated goods category and production route: provisions on system boundaries (inputs, outputs and corresponding emissions), emission monitoring and relevant precursors

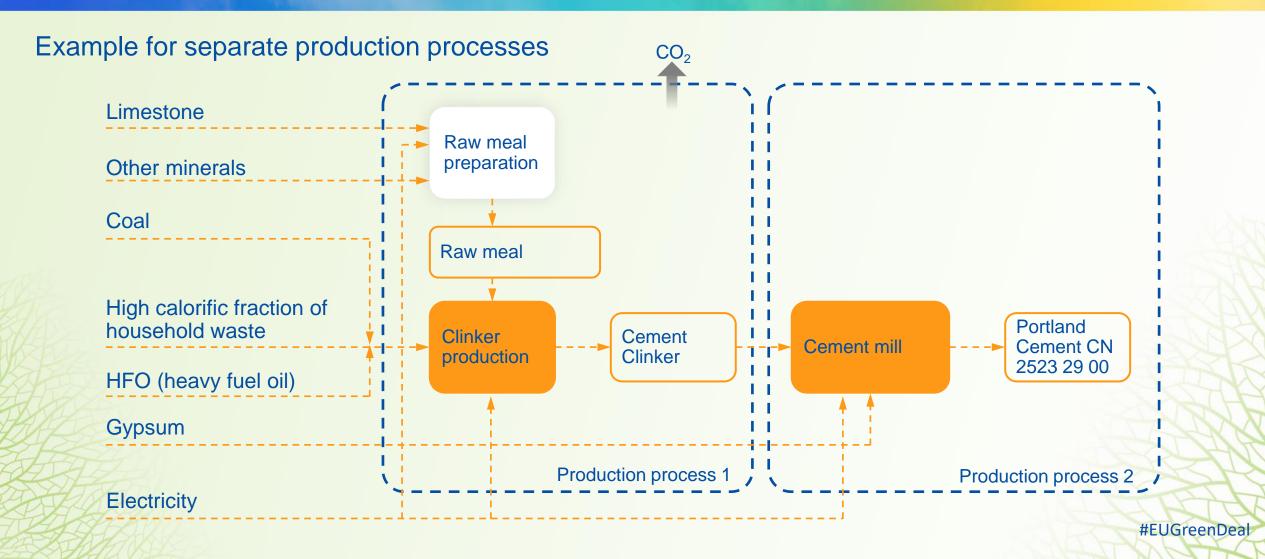
Goods in scope of CBAM

CN code	Aggregated goods category	Greenhouse gas
Cement		
2507 00 80 – Other kaolinic clays	Calcined clay	
2523 10 00 – Cement clinkers	Cement clinker	
2523 21 00 – White portland cement, whether or not artificially coloured	Cement	Carbon dioxide
2523 29 00 – Other Portland cement		
2523 90 00 – Other hydraulic cements		
2523 30 00 – Aluminous cement	Aluminous cement	

Steps to determine embedded emissions

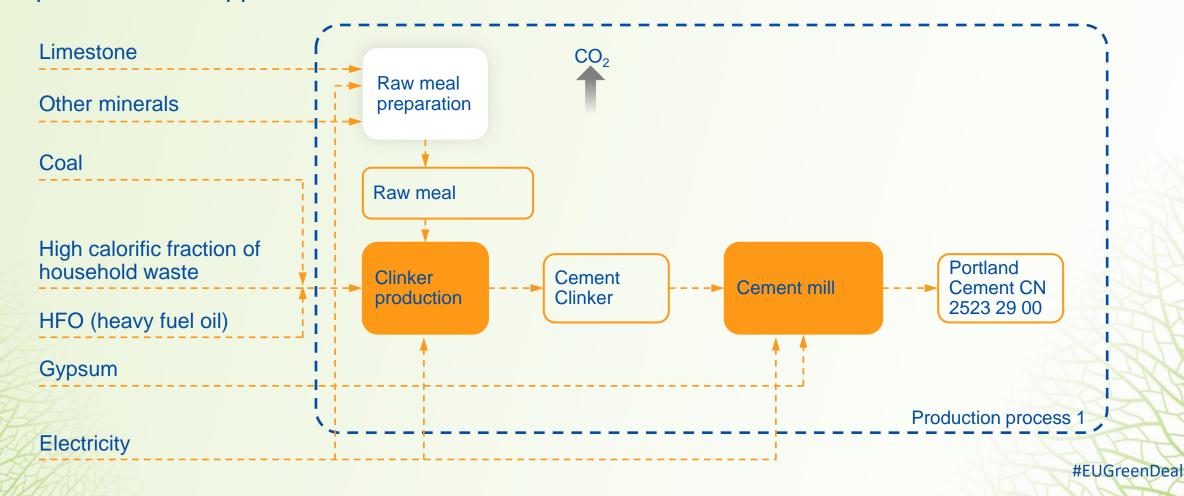
Step 1. Split the installation into production processes and its specified system boundaries

Step 2. Identify relevant parameters and methods, then carry out monitoring


Step 3. Attribute emissions to production processes

Step 4. Add the specific embedded emissions of relevant precursors

Step 5. Determine the specific embedded emissions of CBAM goods


Step 1: Split installation into production processes (1/2)

Step 1: Split installation into production processes (2/2)

Example for ,bubble approach'

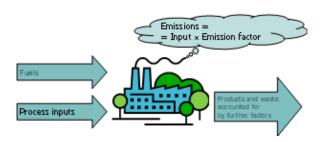
Step 2: Monitoring – General

- Direct emissions from fuels and materials
 - Standard method, mass balance, continuous emissions monitoring
- Direct emissions related to heat flows, if relevant
 - Determine heat flows
 - Emissions = heat flow × corresponding emission factor
- Waste gases, if relevant
 - Determine flows and calorific values

Electricity produced, if relevant

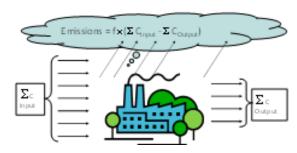
- Indirect emissions related to electricity consumption
 - Determine electricity consumption for the production of CBAM goods

- Precursors, if relevant
 - Determine precursor consumption



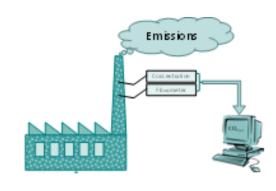
Step 2: Monitoring – Direct emissions

Calculation-based methodology


Standard method

- determine quantities of fuels and input materials consumed
- determine calculation factors such as net calorific value and emission factor
- determine emissions by multiplying consumption with calculation factors

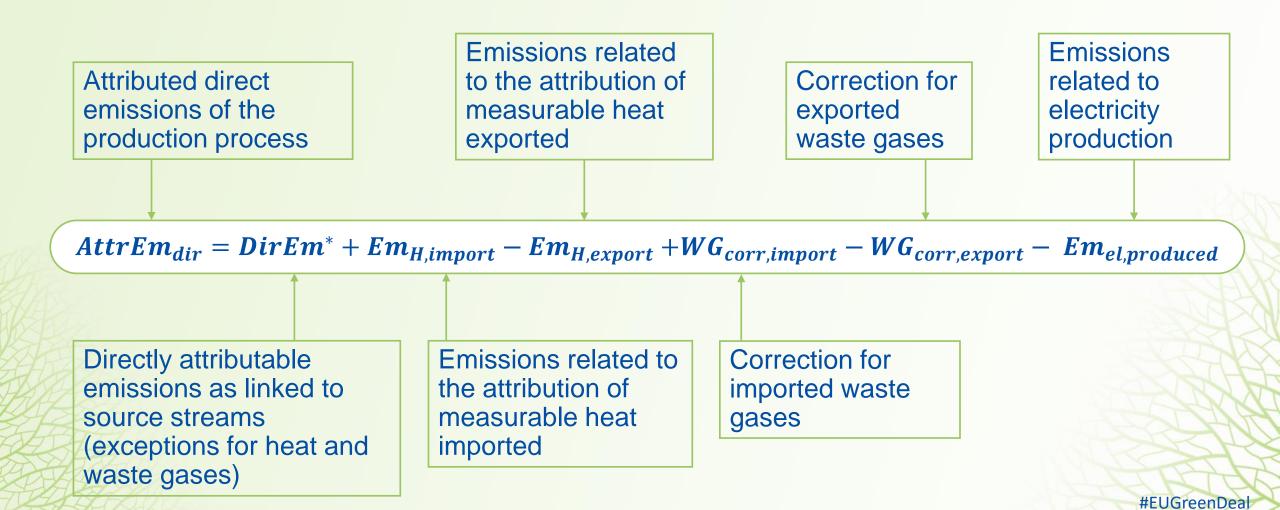
Mass balance


- determine carbon content in all fuels and input materials
- determine carbon content in all output materials
- determine emissions as difference between inputs and outputs
- typically relevant where carbon remains in the goods produced (e.g. steel).

Measurement-based methodology

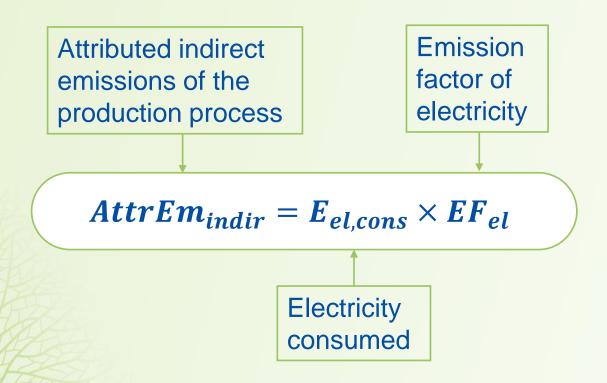
Continuous emissions monitoring system

- measure GHG concentration directly in the stack or using extractive procedures
- measure flue gas flow
- determine emissions



Step 2: Monitoring – Other methods

- 1. Other monitoring and reporting methods until 31 December 2024, if similar coverage and accuracy of emissions data:
 - a carbon pricing scheme where the installation is located, or
 - a compulsory emission monitoring scheme where the installation is located, or
 - an emission monitoring scheme at the installation which can include verification by an accredited verifier.
- 2. Other referenced methods including default values until 31 July 2024
- 3. Estimation of up to 20% of the total embedded emissions in the case of complex goods (includes the use of default values)



Step 3: Attribution of direct emissions

Step 3: Attribution of indirect emissions

Emission factor of electricity

- 1) General case: use of default values
 - average emission factor of the country of origin, based on IEA data
 - other emission factors based on publicly available data (average emission factor or CO₂ emission factor)
- 2) Use of actual emission factors, if:
 - direct technical connection or
 - power purchase agreement

Steps 4 and 5: Precursors and calculation of specific embedded emissions

For simple goods (Step 5):

 $SEE_g = \frac{AttrEm_g}{AL_g}$

Attributed emissions (direct or indirect)

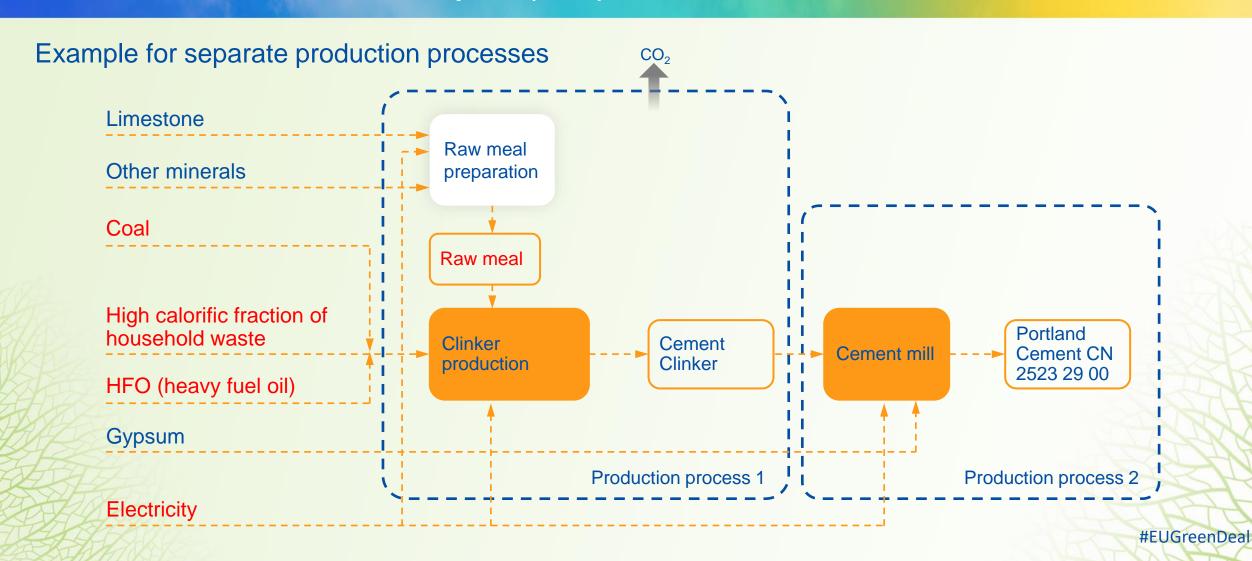
Specific embedded emissions (direct or indirect)

Amount of goods produced

For complex goods using precursors as input (Steps 4 and 5):

$$SEE_g = \frac{AttrEm_g}{AL_g} + \sum_{i=1}^n m_i \cdot SEE_i$$

Specific embedded emissions (direct or indirect) of the precursors


Specific embedded emissions (direct or indirect)

Amount of precursors used per goods produced

#EUGreenDeal

Worked cement example (1/4)

Worked cement example (2/4)

Production process 1: clinker

Parameter	AD (t)	NCV (GJ/t)	EF (t CO ₂ /t or t CO ₂ /TJ)	Biomass %	Emissions fossil (t CO ₂)	Emissions biomass (t CO ₂)
Process emissions						76
Raw meal	1 255 000		0,525		658 875	
Combustion emissions						
Coal	88 000	25	95		209 000	0
High NCV household Waste	25 000	20	83	15%	35 275	6 225
HFO	43 000	40	78		134 160	0
Total direct emissions					1 037 310	1

Worked cement example (3/4)

Production process 1: clinker

Parameter	AD (MWh)	EF (t CO ₂ /MWh)	t CO ₂
Total direct emissions			1 037 310
Indirect emissions			
Electricity	81 575	0,833	67 953

Parameter	AD (t)	
Clinker production	1 255 000	

1	Parameter	SEE, direct (t CO ₂ /t)	SEE, indirect (t CO ₂ /t)	
5	Specific embedded emissions (clinker)	0,8265	0,0541	

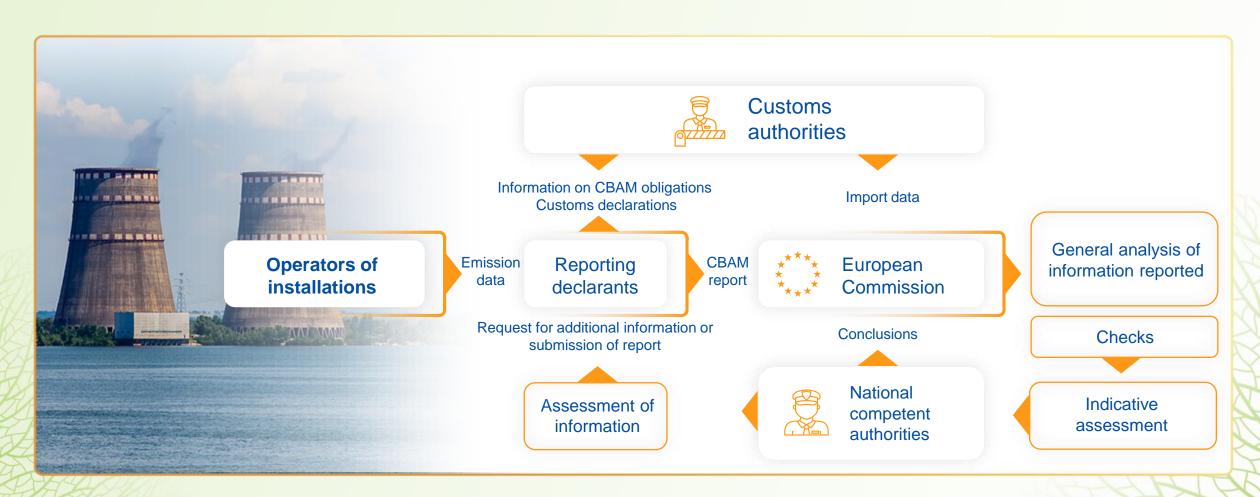
Worked cement example (4/4)

Production process 2: cement

Parameter	SEE, direct (t CO ₂ /t)	SEE, indirect (t CO ₂ /t)
Specific embedded emissions (clinker)	0,8265	0,0541
Parameter	(t/t)	
Clinker / cement ratio	0,95	
Parameter	AD (MWh/t)	Emissions (t CO ₂ /t)
Additional electricity consumption	0,85	0,0708

Parameter	SEE, direct (t CO ₂ /t)	SEE, indirect (t CO ₂ /t)
Contribution of precursor (clinker)	0,7852	0,0514
Production process		0,0708
Total specific embedded emissions (cement)	0,7852	0,1222

Carbon Border Adjustment Mechanism



- Overview of the actors in CBAM
- Reporting declarants

Overview of the actors in CBAM

Who are the reporting declarants?

Rules for Representatives

No representation by others - Own import

Direct customs representative (Status: Customs Declarant)

Indirect customs representative

(Status: Importer)

Importer is the CBAM reporting declarant

declarant

Importer or indirect customs representative may be the reporting declarant

Subject to

reporting

obligations

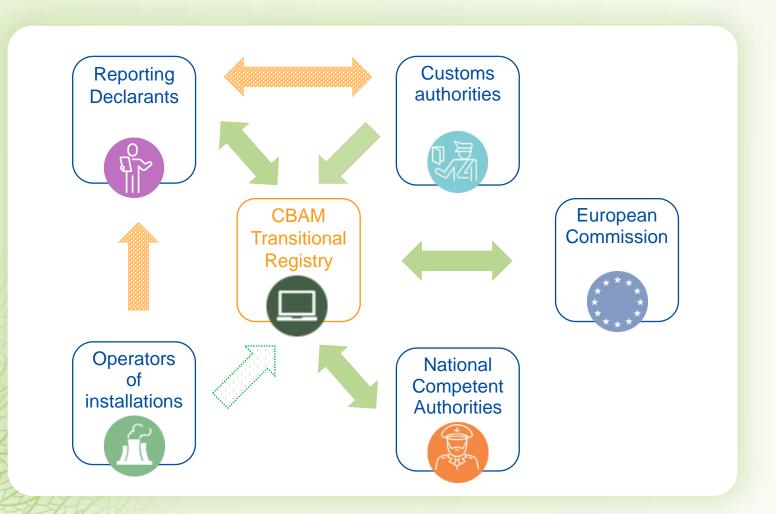
Steps to comply with the CBAM reporting obligations

Step 1: Define the scope of goods concerned

Step 2: Determine the reporting period to use

Step 3: Identify all the parameters you need to report

Step 4: Collect data on carbon price due in jurisdiction if any

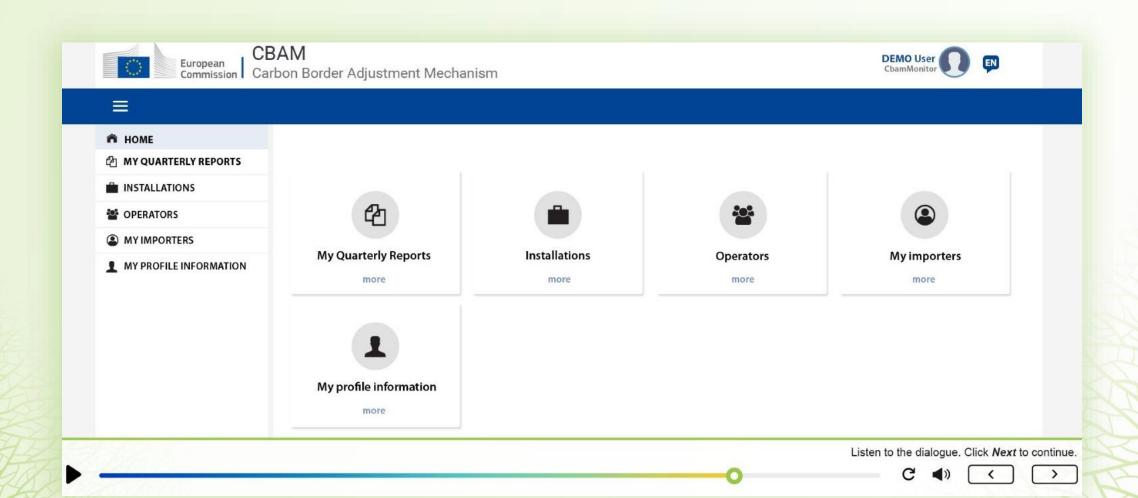

Carbon Border Adjustment Mechanism

4 Submitting CBAM reports

Reporting in the CBAM Transitional Registry

Key highlights

- Single platform to create synergies
- Tool to perform CBAM-related tasks
- Secured platform to ensure confidentiality of information


OUTSIDE THE REGISTRY

VIA THE REGISTRY

The CBAM Transitional Registry

Timeline for reporting declarants

REPORTING PERIOD	SUBMISSION DUE BY	MODIFICATION POSSIBLE UNTIL*
2023: October – December	2024: January 31	2024: July 31
2024: January – March	2024: April 30	2024: July 31
2024: April – June	2024: July 31	2024: August 30
2024: July – September	2024: October 31	2024: November 30
2024: October – December	2025: January 31	2025: February 28
2025: January – March	2025: April 30	2025: May 31
2025: April – June	2025: July 31	2025: August 31
2025: July – September	2025: October 31	2025: November 30
2025: October – December	2026: January 31	2026: February 28

^{*}After the modification deadline, reporting declarants may request reopening of the file before the national competent authority for eventual corrections.

Where to find further information on CBAM?

Visit the CBAM webpage regularly – our one-stop shop

https://taxation-customs.ec.europa.eu/carbon-border-adjustment-mechanism_en

- 2 guidance documents
- Communication template between importers and operators
- Registration to dedicated webinars
- Link to our E-learning materials through the <u>Customs and Tax EU Learning portal</u>
- Q&A and factsheet
- Soon: link to the recording of these webinars

The Carbon Border Adjustment Mechanism-Cement Sector

